22 research outputs found

    Experimental device-independent certified randomness generation with an instrumental causal structure

    Full text link
    The intrinsic random nature of quantum physics offers novel tools for the generation of random numbers, a central challenge for a plethora of fields. Bell non-local correlations obtained by measurements on entangled states allow for the generation of bit strings whose randomness is guaranteed in a device-independent manner, i.e. without assumptions on the measurement and state-generation devices. Here, we generate this strong form of certified randomness on a new platform: the so-called instrumental scenario, which is central to the field of causal inference. First, we theoretically show that certified random bits, private against general quantum adversaries, can be extracted exploiting device-independent quantum instrumental-inequality violations. To that end, we adapt techniques previously developed for the Bell scenario. Then, we experimentally implement the corresponding randomness-generation protocol using entangled photons and active feed-forward of information. Moreover, we show that, for low levels of noise, our protocol offers an advantage over the simplest Bell-nonlocality protocol based on the Clauser-Horn-Shimony-Holt inequality.Comment: Modified Supplementary Information: removed description of extractor algorithm introduced by arXiv:1212.0520. Implemented security of the protocol against general adversarial attack

    Machine-learning-based device-independent certification of quantum networks

    Get PDF
    Witnessing nonclassical behavior is a crucial ingredient in quantum information processing. For that, one has to optimize the quantum features a given physical setup can give rise to, which is a hard computational task currently tackled with semidefinite programming, a method limited to linear objective functions and that becomes prohibitive as the complexity of the system grows. Here, we propose an alternative strategy, which exploits a feedforward artificial neural network to optimize the correlations compatible with arbitrary quantum networks. A remarkable step forward with respect to existing methods is that it deals with nonlinear optimization constraints and objective functions, being applicable to scenarios featuring independent sources and nonlinear entanglement witnesses. Furthermore, it offers a significant speedup in comparison with other approaches, thus allowing to explore previously inaccessible regimes. We also extend the use of the neural network to the experimental realm, a situation in which the statistics are unavoidably affected by imperfections, retrieving device-independent uncertainty estimates on Bell-like violations obtained with independent sources of entangled photon states. In this way, this work paves the way for the certification of quantum resources in networks of growing size and complexity

    Experimental device-independent tests of quantum channels

    Full text link
    Quantum tomography is currently the mainly employed method to assess the information of a system and therefore plays a fundamental role when trying to characterize the action of a particular channel. Nonetheless, quantum tomography requires the trust that the devices used in the laboratory perform state generation and measurements correctly. This work is based on the theoretical framework for the device-independent inference of quantum channels that was recently developed and experimentally implemented with superconducting qubits in [Dall'Arno, Buscemi, Vedral, arXiv:1805.01159] and [Dall'Arno, Brandsen, Buscemi, PRSA 473, 20160721 (2017)]. Here, we present a complete experimental test on a photonic setup of two device-independent quantum channels falsification and characterization protocols to analyze, validate, and enhance the results obtained by conventional quantum process tomography. This framework has fundamental implications in quantum information processing and may also lead to the development of new methods removing the assumptions typically taken for granted in all the previous protocols

    Tunable Two-Photon Quantum Interference of Structured Light

    Get PDF
    Structured photons are nowadays an important resource in classical and quantum optics due to the richness of properties they show under propagation, focusing, and in their interaction with matter. Vectorial modes of light in particular, a class of modes where the polarization varies across the beam profile, have already been used in several areas ranging from microscopy to quantum information. One of the key ingredients needed to exploit the full potential of complex light in the quantum domain is the control of quantum interference, a crucial resource in fields like quantum communication, sensing, and metrology. Here we report a tunable Hong-Ou-Mandel interference between vectorial modes of light. We demonstrate how a properly designed spin-orbit device can be used to control quantum interference between vectorial modes of light by simply adjusting the device parameters and no need of interferometric setups. We believe our result can find applications in fundamental research and quantum technologies based on structured light by providing a new tool to control quantum interference in a compact, efficient, and robust way

    Experimental nonclassicality in a causal network without assuming freedom of choice

    Get PDF
    In a Bell experiment, it is natural to seek a causal account of correlations wherein only a common cause acts on the outcomes. For this causal structure, Bell inequality violations can be explained only if causal dependencies are modeled as intrinsically quantum. There also exists a vast landscape of causal structures beyond Bell that can witness nonclassicality, in some cases without even requiring free external inputs. Here, we undertake a photonic experiment realizing one such example: the triangle causal network, consisting of three measurement stations pairwise connected by common causes and no external inputs. To demonstrate the nonclassicality of the data, we adapt and improve three known techniques: (i) a machine-learning-based heuristic test, (ii) a data-seeded inflation technique generating polynomial Bell-type inequalities and (iii) entropic inequalities. The demonstrated experimental and data analysis tools are broadly applicable paving the way for future networks of growing complexity

    Experimental Connection between the Instrumental and Bell Inequalities

    Get PDF
    An investigated process can be studied in terms of the causal relations among the involved variables, representing it as a causal model. Some causal models are particularly relevant, since they can be tested through mathematical constraints between the joint probability distributions of the observables. This is a valuable tool because, if some data violates the constraints of a causal model, the implication is that the observed statistics is not compatible with that causal structure. Strikingly, when non-classical correlations come to play, a discrepancy between classical and quantum causal predictions can arise, producing a quantum violation of the classical causal constraints. The simplest scenario admitting such quantum violation is given by the instrumental causal processes. Here, we experimentally violate an instrumental test on a photonic platform and show how the quantum correlations violating the CHSH inequality can be mapped into correlations violating an instrumental test, despite the different forms of non-locality they display. Indeed, starting from a Bell-like scenario, we recover the violation of the instrumental scenario through a map between the two behaviours, which includes a post-selection of data and then we test an alternative way to violate the CHSH inequality, adopting the instrumental process platform
    corecore